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1 Introduction

Compression is used just about everywhere. All the images you get on the web are compressed,
typically in the JPEG or GIF formats, most modems use compression, HDTV will be compressed
using MPEG-2, and several file systems automatically compress files when stored, and the rest
of us do it by hand. The neat thing about compression, as with the other topics we will cover in
this course, 1s that the algorithms used in the real world make heavy use of a wide set of algo-
rithmic tools, including sorting, hash tables, tries, and FFTs. Furthermore, algorithms with strong
theoretical foundations play a critical role in real-world applications.

In this chapter we will use the generic term message for the objects we want to compress,
which could be either files or messages. The task of compression consists of two components, an
encoding algorithm that takes a message and generates a “‘compressed” representation (hopefully
with fewer bits), and a decoding algorithm that reconstructs the original message or some approx-
mmation of it from the compressed representation. These two components are typically intricately
tied together since they both have to understand the shared compressed representation.

We distinguish between lossless algorithins, which can reconstruct the original message exactly
from the compressed message, and lossy algorithms, which can only reconstruct an approximation
of the original message. Lossless algorithms are typically used for text, and lossy for images and
sound where a little bit of loss in resolution is often undetectable, or at least acceptable. Lossy is
used in an abstract sense, however, and does not mean random lost pixels, but instead means loss
of a quantity such as a frequency component, or perhaps loss of noise. For example, one might
think that lossy text compression would be unacceptable because they are imagining missing or
switched characters. Consider instead a system that reworded sentences into a more standard
form, or replaced words with synonyms so that the file can be better compressed. Technically
the compression would be lossy since the text has changed, but the “meaning” and clarity of the
message might be fully maintained, or even improved. In fact Strunk and White might argue that
good writing is the art of lossy text compression.

Is there a lossless algorithm that can compress all messages? There has been at least one
patent application that claimed to be able to compress all files (messages)—Patent 5,533,051 titled
“Methods for Data Compression”. The patent application claimed that if it was applied recursively,
a file could be reduced to almost nothing. With a little thought you should convince yourself that
this is not possible, at least if the source messages can contain any bit-sequence. We can see this
by a simple counting argument. Lets consider all 1000 bit messages, as an example. There are
21000 gifferent messages we can send. each which needs to be distinctly identified by the decoder.
It should be clear we can’t represent that many different messages by sending 999 or fewer bits for
all the messages — 999 bits would only allow us to send 2% distinct messages. The truth is that
if any one message is shortened by an algorithm, then some other message needs to be lengthened.
You can verify this in practice by running GZIP on a GIF file. It is. in fact. possible to go further
and show that for a set of input messages of fixed length, if one message is compressed, then the
average length of the compressed messages over all possible inputs is always going to be longer
than the original input messages. Consider. for example, the 8 possible 3 bit messages. If one is
compressed to two bits, it is not hard to convince yourself that two messages will have to expand
to 4 bits, giving an average of 3 1/8 bits. Unfortunately, the patent was granted.



Because one can’t hope to compress everything, all compression algorithms must assume that
there is some bias on the input messages so that some inputs are more likely than others. i.e. that
there is some unbalanced probability distribution over the possible messages. Most compression
algorithms base this “bias™ on the structure of the messages — i.e., an assumption that repeated
characters are more likely than random characters, or that large white patches ocecur in “typical”
images. Compression is therefore all about probability.

When discussing compression algorithms it is important to make a distinction between two
components: the model and the coder. The model component somehow captures the probability
distribution of the messages by knowing or discovering something about the structure of the mput.
The coder component then takes advantage of the probability biases generated in the model to
generate codes. It does this by effectively lengthening low probability messages and shortening
high-probability messages. A model, for example, might have a generic “understanding” of human
faces knowing that some “faces” are more likely than others (e.g., a teapot would not be a very
likely face). The coder would then be able to send shorter messages for objects that look like
faces. This could work well for compressing teleconference calls. The models in most current
real-world compression algorithms, however, are not so sophisticated, and use more mundane
measures such as repeated patterns in text. Although there are many different ways to design the
model component of compression algorithms and a huge range of levels of sophistication. the coder
components tend to be quite generic—in current algorithms are almost exclusively based on either
Huffiman or arithmetic codes. Lest we try to make to fine of a distinction here, it should be pointed
out that the line between model and coder components of algorithms is not always well defined.

It turns out that information theory is the glue that ties the model and coder components to-
gether. In particular it gives a very nice theory about how probabilities are related to information
content and code length. As we will see, this theory matches practice almost perfectly, and we can
achieve code lengths almost identical to what the theory predicts.

Another question about compression algorithms 1s how does one judge the quality of one ver-
sus another. In the case of lossless compression there are several criteria I can think of, the time to
compress, the time to reconstruct, the size of the compressed messages, and the generality—i.e.,
does it only work on Shakespeare or does it do Byron too. In the case of lossy compression the
judgement is further complicated since we also have to worry about how good the lossy approx-
imation is. There are typically tradeoffs between the amount of compression, the runtime, and
the quality of the reconstruction. Depending on your application one might be more important
than another and one would want to pick your algorithm appropriately. Perhaps the best attempt
to systematically compare lossless compression algorithms is the Archive Comparison Test (ACT)
by Jeff Gilchrist. Tt reports times and compression ratios for 100s of compression algorithms over
many databases. Tt also gives a score based on a weighted average of runtime and the compression
raftio.

This chapter will be organized by first covering some basics of information theory. Section 3
then discusses the coding component of compressing algorithms and shows how coding is related
to the information theory. Section 4 discusses various models for generating the probabilities
needed by the coding component. Section 5 describes the Lempel-Ziv algorithms, and Section 6
covers other lossless algorithms (currently just Burrows-Wheeler).




Run-length Coding

Probably the sumplest coding scheme that takes advantage ot the context 1s run-length coding.
Although there are many variants, the basic idea is to identify strings of adjacent messages of
equal value and replace them with a single occurrence along with a count. For example, the
message sequence acccbbaaabb could be transformed to (a.1), (c,3), (b.2), (a,3), (b.2). Once
transformed, a probability coder (e.g., Huffman coder) can be used to code both the message values
and the counts. It is typically important to probability code the run-lengths since short lengths (e.g..
1 and 2) are likely to be much more common than long lengths (e.g.. 1356).

An example of a real-world use of run-length coding is for the ITU-T T4 (Group 3) standard
for Facsimile (fax) machines®. At the time of writing (1999), this was the standard for all home
and business fax machines used over regular phone lines. Fax machines transmit black-and-white
images. Each pixel is called a pel and the horizontal resolution is fixed at 8.05 pels/mm. The
vertical resolution varies depending on the mode. The T4 standard uses run-length encoding to
code each sequence of black and white pixels. Since there are only two message values black and
white, only the run-lengths need to be transmitted. The T4 standard specifies the start color by
placing a dummy white pixel at the front of each row so that the first run is always assumed to
be a white run. For example, the sequence bbbbwwbbbbb would be transmitted as 1,4.2.5. The

run-length  white codeword black codeword
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64+ 131011 0000001111
128+ 10010 000011001000

Table 3: ITU-T T4 Group 3 Run-length Huffman codes.

T4 standard uses static Huffman codes to encode the run-lengths, and uses a separate codes for
the black and white pixels. To account for runs of more than 64, it has separate codes to specify
multiples of 64. For example, a length of 150, would consist of the code for 128 followed by the
code for 22. A small subset of the codes are given in Table 4.1. These Huffiman codes are based
on the probability of each run-length measured over a large number of documents. The full T4
standard also allows for coding based on the previous line.



Transform Coding

The idea of transform coding is to transform the input into a different form which can then either be
compressed better, or for which we can more easily drop certain terms without as much qualitative
loss in the output. One form of transform is to select a linear set of basis functions (¢;) that span the
space to be transformed. Some common sets include sin, cos, polynomials, spherical harmonics,
Bessel functions, and wavelets. Figure 18 shows some examples of the first three basis functions
for discrete cosine, polynomial, and wavelet transformations. For a set of n values, transforms can
be expressed as an n x n matrix 7. Multiplying the input by this matrix 7" gives, the transformed
coefficients. Multiplying the coefficients by 7! will convert the data back to the original form.
For example, the coefficients for the discrete cosine transform (DCT) are
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The DCT is one of the most commonly used transforms in practice for image compression,
more so than the discrete Fourier transform (DFT). This is because the DFT assumes periodicity,
which is not necessarily true in images. In particular to represent a linear function over a region
requires many large amplitude high-frequency components in a DFT. This is because the period-
icity assumption will view the function as a sawtooth, which is highly discontinuous at the teeth
requiring the high-frequency components. The DCT does not assume periodicity and will only re-
quire much lower amplitude high-frequency components. The DCT also does not require a phase.
which is typically represented using complex numbers in the DFT.

For the purpose of compression, the properties we would like of a transform are (1) to decor-
relate the data, (2) have many of the transformed coefficients be small, and (3) have it so that from
the point of view of perception, some of the terms are more important than others.

Cosine fx)

/ =

D

I N AN
T="vVv |

S8

Polynomial

L

Wavelet

?-3‘ l_lu' ’wf‘l_

s

(5]

|




v I

R (optional)_

For each plane

[TTTTT]
Quantization !
A —< 2T (11
= = s "o [[T1

for each

I
8x8block [ [T TT1]

zig-zag order
7 DC difference from prev. block

L s Huffman or Arithmetic )
- = Bits
RLE

Figure 19: Steps in JPEG compression.

designed to better represent human perception and are what are used on analog TVs in the US (the
NTSC standard). The Y plane is designed to represent the brightness (luminance) of the image. It
is a weighted average of red, blue and green (0.59 Green + 0.30 Red + 0.11 Blue). The weights
are not balanced since the human eye 1s more responsive to green than to red, and more to red than
to blue. The I (interphase) and Q (quadrature) components represent the color hue (chrominance).
If you have an old black-and-white television, it uses only the Y signal and drops the I and Q
components, which are carried on a sub-carrier signal. The reason for converting to YIQ is that it
1s more important in terms of perception to get the intensity right than the hue. Therefore JPEG
keeps all pixels for the intensity, but typically down samples the two color planes by a factor of 2
in each dimension (a total factor of 4). This 1s the first lossy component of JPEG and gives a factor
of 2 compression: (1 + 2 x.25)/3 = .5.

The next step of the JPEG algorithm is to partition each of the color planes into 8x8 blocks.
Each of these blocks is then coded separately. The first step in coding a block is to apply a cosine
transform across both dimensions. This returns an 8x8 block of 8-bit frequency terms. So far this
does not introduce any loss, or compression. The block-size is motivated by wanting it to be large
enough to capture some frequency components but not so large that it causes “frequency spilling”.
In particular if we cosine-transformed the whole image, a sharp boundary anywhere in a line would
cause high values across all frequency components in that line.

After the cosine transform, the next step applied to the blocks is to use uniform scalar quanti-
zation on each of the frequency terms. This quantization 1s controllable based on user parameters
and 1s the main source of information loss in JPEG compression. Since the human eye is more
perceptive to certain frequency components than to others, JPEG allows the quantization scaling
factor to be different for each frequency component. The scaling factors are specified using an
8x8 table that simply is used to element-wise divide the 8x8 table of frequency components. JPEG
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Figure 20: Zig-zag scanning of JPEG blocks.

defines standard quantization tables for both the Y and I-Q components. The table for Y is shown
in Table 6. In this table the largest components are in the lower-right corner. This is because these
are the highest frequency components which humans are less sensitive to than the lower-frequency
components in the upper-left corner. The selection of the particular numbers in the table seems
magic, for example the table is not even symmetric, but it is based on studies of human perception.
If desired, the coder can use a different quantization table and send the table in the head of the
message. To further compress the image, the whole resulting table can be divided by a constant,
which is a scalar “quality control” given to the user. The result of the quantization will often drop
most of the terms i the lower left to zero.

JPEG compression then compresses the DC component (upper-leftmost) separately from the
other components. In particular it uses a difference coding by subtracting the value given by the
DC component of the previous block from the DC component of this block. It then Huffiman or
arithmetic codes this difference. The motivation for this method is that the DC component is often
similar from block-to-block so that difference coding it will give better compression.

The other components (the AC components) are now compressed. They are first converted imnto
a linear order by traversing the frequency table in a zig-zag order (see Figure 20). The motiva-
tion for this order 1s that it keeps frequencies of approximately equal length close to each other
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Figure 21: MPEG B-frames postponed in data stream.

in the linear-order. In particular most of the zeros will appear as one large contiguous block at
the end of the order. A form of run-length coding is used to compress the linear-order. It is
coded as a sequence of (skip,value) pairs, where skip 1s the number of zeros before a value, and
value is the value. The special pair (0,0) specifies the end of block. For example, the sequence
[4.3.0,0.1.0.0.0,1,0,0,0....] 1s represented as [(0.4),(0,3),(2.1).(3.1).(0.0)]. This sequence 1s then
compressed using either arithmetic or Huffman coding. Which of the two coding schemes used is
specified on a per-image basis in the header.

MPEG

JPEG 1s a lossy compression scheme for color and gray-scale images. It works on full 24-bit color,
and was designed to be used with photographic material and naturalistic artwork. It is not the ideal
format for line-drawings. textual images. or other images with large areas of solid color or a very
limited number of distinct colors. The lossless techniques. such as JBIG, work better for such
images.

JPEG 1s designed so that the loss factor can be tuned by the user to tradeoff image size and
image quality, and is designed so that the loss has the least effect on human perception. It however
does have some anomalies when the compression ratio gets high, such as odd effects across the
boundaries of 8x8 blocks. For high compression ratios. other techniques such as wavelet compres-
sion appear to give more satisfactory results.

An overview of the JPEG compression process is given in Figure 19. We will cover each of the
steps 1n this process.

The input to JPEG are three color planes of 8-bits per-pixel each representing Red, Blue and
Green (RGB). These are the colors used by hardware to generate images. The first step of JPEG
compression, which 1s optional, s to convert these into YIQ color planes. The YIQ color planes are



Correlation improves compression. This is a recurring theme in all of the approaches we have seen;
the more effectively a technique 1s able to exploit correlations in the data, the more effectively it
will be able to compress that data.

This principle 1s most evident in MPEG encoding. MPEG compresses video streams. In the-
ory, a video stream 1s a sequence of discrete images. In practice, successive images are highly
terrelated. Barring cut shots or scene changes, any given video frame is likely to bear a close
resemblance to neighboring frames. MPEG exploits this strong correlation to achieve far better
compression rates than would be possible with 1solated images.

Each frame in an MPEG image stream is encoded using one of three schemes:

I-frame . or intra-frame, are coded as isolated images.
P-frame . or predictive coded frame, are based on the previous I- or P-frame.

B-frame . or bidirectionally predictive coded frame, are based on either or both the previous and
next I- or P-frame.

Figure 21 shows an MPEG stream contaming all three types of frames. I-frames and P-frames
appear in an MPEG stream 1 simple, chronological order. However, B-frames are moved so that
they appear after their neighboring I- and P-frames. This guarantees that each frame appears after
any frame upon which it may depend. An MPEG encoder can decode any frame by buffering the
two most recent I- or P-frames encountered in the data stream. Figure 21 shows how B-frames are
postponed in the data stream so as to simplify decoder buffering. MPEG encoders are free to mix
the frame types in any order. When the scene is relatively static, P- and B-frames could be used,
while major scene changes could be encoded using I-frames. In practice, most encoders use some
fixed pattern.
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Figure 22: P-frame encoding.

Since I-frames are independent images, they can be encoded as if they were still images. The
particular technique used by MPEG is a variant of the JPEG technique (the color transformation
and quantization steps are slightly different). I-frames are very important for use as anchor points
so that the frames in the video can be accessed randomly without requiring one to decode all
previous frames. To decode any frame we need only find its closest previous I-frame and go from
there. This 1s important for allowing reverse playback, skip-ahead. or error-recovery.

The intuition behind encoding P-frames is to find matches, i.e.. groups of pixels with similar
patterns, in the previous reference frame and then coding the difference between the P-frame and
its match. To find these “matches” the MPEG algorithm partitions the P-frame into 16x16 blocks.
The process by which each of these blocks 1s encoded is illustrated in Figure 22. For each target
block in the P-frame the encoder finds a reference block in the previous P- or I-frame that most
closely matches it. The reference block need not be aligned on a 16-pixel boundary and can
potentially be anywhere in the image. In practice, however, the x-y offset is typically small. The
offset is called the motion vector. Once the match is found, the pixels of the reference block are
subtracted from the corresponding pixels in the target block. This gives a residual which ideally is
close to zero everywhere. This residual is coded using a scheme similar to JPEG encoding, but will
ideally get a much better compression ratio because of the low intensities. In addition to sending
the coded residual, the coder also needs to send the motion vector. This vector 1s Huffman coded.
The motivation for searching other locations in the reference image for a match is to allow for the
efficient encoding of motion. In particular if there is a moving object in the sequence of images
(e.g.. a car or a ball). or if the whole video is panning, then the best match will not be in the same
location in the image. It should be noted that if no good match is found. then the block 1s coded as
if it were from an I-frame.



MPEG in the Real World

MPEG has tound a number of applications in the real world, including:
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Direct Broadcast Satellite. MPEG video streams are received by a dish/decoder. which un-
packs the data and synthesizes a standard NTSC television signal.

Cable Television. Trial systems are sending MPEG-II programming over cable television
lines.

. Media Vaults. Silicon Graphics, Storage Tech. and other vendors are producing on-demand

video systems, with twenty file thousand MPEG-encoded films on a single installation.

Real-Time Encoding. This is still the exclusive province of professionals. Incorporating
special-purpose parallel hardware, real-time encoders can cost twenty to fifty thousand dol-
lars.



In practice, the search for good matches for each target block is the most computationally
expensive part of MPEG encoding. With current technology, real-time MPEG encoding is only
possible with the help of custom hardware. Note, however, that while the search for a match is
expensive. regenerating the image as part of the decoder is cheap since the decoder is given the
motion vector and only needs to look up the block from the previous image.

B-frames were not present in MPEG’s predecessor. H.261. Theyv were added i an effort to
address the following situation: portions of an intermediate P-frame may be completely absent
from all previous frames, but may be present in future frames. For example, consider a car entering
a shot from the side. Suppose an I-frame encodes the shot before the car has started to appear, and
another I-frame appears when the car is completely visible. We would like to use P-frames for
the intermediate scenes. However, since no portion of the car is visible in the first I-frame, the
P-frames will not be able to “reuse” that information. The fact that the car is visible in a later
[-frame does not help us, as P-frames can only look back in time, not forward.

B-frames look for reusable data in both directions. The overall technique is very similar to that
used in P-frames, but instead of just searching in the previous I- or P-frame for a match. it also
searches in the next I- or P-frame. Assuming a good match is found in each. the two reference
frames are averaged and subtracted from the target frame. If only one good match is found. then it
is used as the reference. The coder needs to send some information on which reference(s) is (are)
used. and potentially needs to send two motion vectors.

How effective is MPEG compression? We can examine typical compression ratios for each
frame type, and form an average weighted by the ratios in which the frames are typically inter-
leaved.

Starting with a 356 x 260 pixel, 24-bit color image, typical compression ratios for MPEG-I are:

Type Size Ratio
I 18 Kb 71
P 6Kb 20:1
B 25Kb 50:1

Avg 48Kb 27:1

If one 356 x 260 frame requires 4.8 Kb, how much bandwidth does MPEG require in order to
provide a reasonable video feed at thirty frames per second?

30frames/sec-4.8Kb/ frame - 8b/bit = 1.2Mbits/sec

Thus far, we have been concentrating on the visual component of MPEG. Adding a stereo audio
stream will require roughly another 0.25 Mbits/sec, for a grand total bandwidth of 1.45 Mbits/sec.

This fits nicely within the 1.5 Mbit/sec capacity of a T1 line. In fact, this specific limit was a
design goal in the formation of MPEG. Real-life MPEG encoders track bit rate as they encode, and
will dynamically adjust compression qualities to keep the bit rate within some user-selected bound.
This bit-rate control can also be important in other contexts. For example, video on a multimedia
CD-ROM must fit within the relatively poor bandwidth of a typical CD-ROM drive.






