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CELP - Code Excited Linear Prediction 
 
Meaning of CELP – “Code Excited Linear Prediction”, is a lossy compression 

algorithm used for low bit rate (e.g.,4800 bps in U.S. Fed-Std-1016) speech 

coding. CELP coding, at 4800 bps, breaks the performance barrier of most 

Government standards, providing Consortium ratings of "very good" 

intelligibility and "excellent" quality, comparable to 32,000 bps (CVSD). 

 
Like all vector quantization techniques, CELP coding is a frame-oriented 
technique that breaks a sampled input signal into blocks of samples (i.e., vectors) 
that are processed as one unit. CELP coding is based on analysis-by-synthesis 
search procedures, perceptually weighted vector quantization (VQ), and linear 
prediction (LP). A 10th order LP filter is used to model the speech signal's short-
term spectrum, or formant structure. Long-term signal periodicity, or ` 1111111, 
is modeled by an adaptive code book VQ. The residual from the short-term LP 
and pitch VQ is vector quantized using a fixed stochastic code book. The optimal 
scaled excitation vectors from the adaptive and stochastic code books are selected 
by minimizing a time varying, perceptually weighted distortion measure that 
improves subjective speech quality by exploiting masking properties of human 
hearing. 

 
The CELP coder's computational requirements are dominated by the two code 
book searches. The computational complexity and speech quality of the coder 
depend upon the search sizes of the code books. Any subset of either code book 
can be searched to fit processor constraints, at the expense of speech quality. 

 
Other Related Definitions: 
 



“…CELP is a relatively new digital voice algorithm that permits high 
quality | | digital voice communications over normal dial-up telephone 
lines.” [Totse] 

 
“…A study of a new type of speech coding algorithm that in many ways fills a 
void in the capabilities of present generation speech coders. Previously studied 
waveform coding schemes tend to have a knee in the speech quality / bit rate 
curve such that for rates substantially below 10 kb/s, the quality of the reproduced 
speech falls off rapidly. At rates below 3 kb/s, vocoders which produce synthetic 
quality speech are the only alternative. The Code Excited Linear Prediction 
(CELP) coding scheme studied here tends to fill in the gap between waveform 
coders and vocoders at rates around 5 kb/s.” [P. Kabal] 

 
“…CELP (Code Excited Linear Prediction) - By using predictive techniques 
such as those used in ADPCM combined with more advanced prediction 
techniques that predict some of the periodicity (or long-term correlations) we 
could quantize the predictor error with just a few bits per sample. However, for 
bit rates at 8 kb/s and lower, we only have a fraction of bits per sample available. 
To solve this dilemma we use Vector Quantization (VQ) or codebook 
techniques. By having a codebook both at the encoder and decoder side only the 
indices have to be transmitted. In CELP coders codebooks are used to quantize 
the predictor error. At the decoder, the corresponding codebook vector is looked 
up and filtered through the inverse predictor filters to 



produce the reconstructed output speech. Further improvement can be 
achieved by applying a postfilter.” [Lucenttls] 

 
“…A new speech coding algorithm, pole-zero CELP (code excited linear 
prediction), is proposed in which the short-time spectral envelop of the speech 
wave is modeled with a pole-zero filter. 
Hence, zeros which occur in the speech spectrum (e.g., during nasalized speech 
sounds) are more accurately modeled than with the traditional all-pole filter. A 
linear prediction analysis of the speech signal to obtain a pole-zero filter 
representation of the spectral envelope results in a set of nonlinear simultaneous 
equations. Previously, complex iteration schemes have been used to solve for the 
filter coefficients from these equations. However, knowledge of the excitation in 
the pole- zero CELP coder leads to a linear but suboptimum solution for the filter 
coefficients. As expected, it shows improved spectral matching in regions of anti-
resonant nasalized sounds. In addition the high frequency portion of the speech 
signal is matched better. Informal listening tests shown a slight preference for 
speech coded with the zero filter included and a perceptually weighted error 
criterion. ” [ IEEE ] 

 
“…The essence of CELP techniques, which is an analysis-by-synthesis approach 
to codebook search, is retained in LD-CELP. The LD-CELP however, uses 
backward adaptation of predictors and gain to achieve an algorithmic delay of 
0.625 ms. Only the index to the excitation codebook is transmitted. The predictor 
coefficients are updated through LPC analysis of previously quantized speech. 
The excitation again is updated by using the gain information embedded in the 
previously quantized excitation. The block size for the excitation vector and gain 
adaptation is five samples only. A perceptual weighting filter is updated using 
LPC analysis of the unquantized speech. ” 

 

 
MPEG audio coders 

 

MPEG video compression is used in many current and emerging products. It is at 
the heart of digital television set-top boxes, DSS, HDTV decoders, DVD players, 
video conferencing, Internet video, and other applications. These applications 
benefit from video compression in the fact that they may require less storage 
space for archived video information, less bandwidth for the transmission of the 
video information from one point to another, or a combination of both. Besides 
the fact that it works well in a wide variety of applications, a large part of its 
popularity is that it is defined in two finalized international standards, with a third 
standard currently in the definition process. 

 
It is the purpose of this paper to introduce the reader to the basics of MPEG video 
compression, from both an encoding and a decoding perspective. The workings of 
the basic building blocks such as the discrete cosine transform and motion 
estimation are covered, but detailed explanations of the MPEG syntax are not. 
MPEG-2 is a superset of MPEG-1, but in general this paper treats the common 
ground of the two standards, as the differences tend to be understood better by the 
more advanced reader. 

 
 
 
 
 

Example Video Compression Calculation 
 



One of the formats defined for HDTV broadcasting within the United States is 
1920 pixels horizontally by 1080 lines vertically, at 30 frames per second. If these 
numbers are all multiplied together, along with 8 bits for each of the three 
primary colors, the total data rate required would 



be approximately 1.5 Gb/sec. Because of the 6 MHz. channel bandwidth 
allocated, each channel will only support a data rate of 19.2 Mb/sec, which is 
further reduced to 18 Mb/sec by the fact that the channel must also support audio, 
transport, and ancillary data information. As can be seen, this restriction in data 
rate means that the original signal must be compressed by a figure of 
approximately 83:1. This number seems all the more impressive when it is 
realized that the intent is to deliver very high quality video to the end user, with as 
few visible artifacts as possible. This paper will show some of the basic 
techniques that make this video compression possible. 

 

MPEG Video Basics 
 

The acronym MPEG stands for Moving Picture Expert Group, which worked to 
generate the specifications under ISO, the International Organization for 
Standardization and IEC, the International Electrotechnical Commission. What is 
commonly referred to as "MPEG video" actually consists at the present time of 
two finalized standards, MPEG-11 and MPEG-22, with a third standard, MPEG-4, 
in the process of being finalized at the time this paper was written. The MPEG-1 
& -2 standards are similar in basic concepts. They both are based on motion 
compensated block-based transform coding techniques, while MPEG-4 deviates 
from these more traditional approaches in its usage of software image construct 
descriptors, for target bit-rates in the very low range, < 64Kb/sec. Because 
MPEG-1 & -2 are finalized standards and are both presently being utilized in a 
large number of applications, this paper concentrates on compression techniques 
relating only to these two standards. Note that there is no reference to MPEG-3. 
This is because it was originally anticipated that this standard would refer to 
HDTV applications, but it was found that minor extensions to the MPEG-2 
standard would suffice for this higher bit-rate, higher resolution application, so 
work on a separate MPEG-3 standard was abandoned. 

 
MPEG-1 was finalized in 1991, and was originally optimized to work at video 
resolutions of 352x240 pixels at 30 frames/sec (NTSC based) or 352x288 pixels 
at 25 frames/sec (PAL based), commonly referred to as Source Input Format 
(SIF) video. It is often mistakenly thought that the MPEG-1 resolution is limited 
to the above sizes, but it in fact may go as high as 4095x4095 at 60 frames/sec. 
The bit-rate is optimized for applications of around 1.5 Mb/sec, but again can be 
used at higher rates if required. MPEG-1 is defined for progressive frames only, 
and has no direct provision for interlaced video applications, such as in broadcast 
television applications. 

 
MPEG-2 was finalized in 1994, and addressed issues directly related to digital 
television broadcasting, such as the efficient coding of field-interlaced video and 
scalability. Also, the target bit-rate was raised to between 4 and 9 Mb/sec, 
resulting in potentially very high quality video. MPEG-2 consists of profiles and 
levels. The profile defines the bitstream scalability and the colorspace resolution, 
while the level defines the image resolution and the maximum bit-rate per profile. 
Probably the most common descriptor in use currently is Main Profile, Main 
Level (MP@ML) which refers to 720x480 resolution video at 30 frames/sec, at 
bit-rates up to 15 Mb/sec for NTSC video. Another example is the HDTV 
resolution of 1920x1080 pixels at 30 frame/sec, at a bit-rate of up to 80 Mb/sec. 
This is an example of the Main Profile, High Level (MP@HL) descriptor. A 
complete table of the various legal combinations can be found in reference2. 

 
 
 
 



 
 
MPEG Video Layers 



MPEG video is broken up into a hierarchy of layers to help with error handling, 
random search and editing, and synchronization, for example with an audio 
bitstream. From the top level, the first layer is known as the video sequence layer, 
and is any self-contained bitstream, for example a coded movie or advertisement. 
The second layer down is the group of pictures, which is composed of 1 or more 
groups of intra (I) frames and/or non-intra (P and/or B) pictures that will be 
defined later. Of course the third layer down is the picture layer itself, and the 
next layer beneath it is called the slice layer. Each slice is a contiguous sequence 
of raster ordered macroblocks, most often on a row basis in typical video 
applications, but not limited to this by the specification. Each slice consists of 
macroblocks, which are 16x16 arrays of luminance pixels, or picture data 
elements, with 2 8x8 arrays of associated chrominance pixels. The macroblocks 
can be further divided into distinct 8x8 blocks, for further processing such as 
transform coding. Each of these layers has its own unique 32 bit start code 
defined in the syntax to consist of 23 zero bits followed by a one, then followed 
by 8 bits for the actual start code. These start codes may have as many zero bits as 
desired preceding them. 

 
 
 

Intra Frame Coding Techniques 
 

The term intra coding refers to the fact that the various lossless and lossy 
compression  techniques are performed relative to information that is contained 
only within the current frame, and not relative to any other frame in the video 
sequence. In other words, no temporal processing is performed outside of the 
current picture or frame. This mode will be described first because it is simpler, 
and because non-intra coding techniques are extensions to these basics. shows a 
block diagram of a basic MPEG video encoder for intra frames only. It turns out 
that this block diagram is very similar to that of a JPEG still image video encoder, 
with only slight implementation detail differences. The potential ramifications of 
this similarity will be discussed later in this paper. The basic processing blocks 
shown are the video filter, discrete cosine transform, DCT coefficient quantizer, 
and run-length amplitude/variable length coder. These blocks are described 
individually in the sections below. 

 
 
 

Video Filter 
 

In the example HDTV data rate calculation shown previously, the pixels were 
represented as 8- bit values for each of the primary colors – red, green, and blue. 
It turns out that while this may be good for high performance computer generated 
graphics, it is wasteful in most video compression applications. Research into the 
Human Visual System (HVS) has shown that the eye is most sensitive to changes 
in luminance, and less sensitive to variations in chrominance. Since absolute 
compression is the name of the game, it makes sense that MPEG should operate 
on a color space that can effectively take advantage of the eye’s different 
sensitivity to luminance and chrominance information. As such, MPEG uses the 
YCbCr color space to represent the data values instead of RGB, where Y is the 
luminance signal, Cb is the blue color difference signal, and Cr is the red color 
difference signal. 

 
A macroblock can be represented in several different manners when referring to 
the YCbCr color space. Figure 2 shows 3 formats known as 4:4:4, 4:2:2, and 
4:2:0 video. 4:4:4 is full bandwidth YCbCr video, and each macroblock consists 
of 4 Y blocks, 4 Cb blocks, and 4 Cr blocks. Being full bandwidth, this format 



contains as much information as the data would if it were in the RGB color space. 
4:2:2 contains half as much chrominance information as 4:4:4, and 4:2:0 contains 
one quarter of the chrominance information. Although MPEG-2 has provisions to 
handle the higher chrominance formats for professional applications, most 
consumer level products will use the normal 4:2:0 mode so that is the one 
concentrated on in this paper. 



Because of the efficient manner of luminance and chrominance representation, 
the 4:2:0 representation allows an immediate data reduction from 12 
blocks/macroblock to 6 blocks/macroblock, or 2:1 compared to full bandwidth 
representations such as 4:4:4 or RGB. To generate this format without generating 
color aliases or artifacts requires that the chrominance signals be filtered. The 
pixel co-siting is as given in Figure 3, but this does not specify the actual filtering 
technique to be utilized. This is up to the system designer, as one of several 
parameters that may be optimized on a cost vs. performance basis. More details 
on video filtering may be found in this reference3. 

 

 
Discrete Cosine Transform 
 

In general, neighboring pixels within an image tend to be highly correlated. As 
such, it is desired to use an invertible transform to concentrate randomness into 
fewer, decorrelated parameters. The Discrete Cosine Transform (DCT) has been 
shown to be near optimal for a large class of images in energy concentration and 
decorrelating. The DCT decomposes the signal into underlying spatial 
frequencies, which then allow further processing techniques to reduce the 
precision of the DCT coefficients consistent with the Human Visual System 
(HVS) model. 

 
The DCT/IDCT transform operations are described with Equations 1 & 2 respectively4: 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 

Equation 1: Forward Discrete Cosine Transform 
 
 
 
 
 
 

 
 

 

Equation 2: Inverse Discrete Cosine Transform 



In Fourier analysis, a signal is decomposed into weighted sums of orthogonal 
sines and cosines that when added together reproduce the original signal. The 2-
dimensional DCT operation for an 8x8 pixel block generates an 8x8 block of 
coefficients that represent a "weighting" value for each of the 64 orthogonal basis 
patterns that are added together to produce the original image. Figure 4 shows a 
grayscale plot of these DCT basis patterns, and Figure 5 shows how the vertical 
and horizontal frequencies are mapped into the 8x8 block pattern. 

 
Note again that the above equations are based on data blocks of an 8x8 size. It is 
certainly possible to compute the DCT for other block sizes, for example 4x4 or 
16x16 pixels, but the 8x8 size has become the standard as it represents an ideal 
compromise between adequate data decorrelation and reasonable computability. 
Even so, these formidable-looking equations would each normally require 1024 
multiplies and 896 additions if solved directly, but fortunately, as with the case of 
the Fast Fourier Transform, various fast algorithms exist that make the 
calculations considerably faster. 

 
Besides decorrelation of signal data, the other important property of the DCT is 
its efficient energy compaction. This can be shown qualitatively by looking at a 
simple 1-dimensional example. Figure 6 shows an n-point increasing ramp 
function, where n in this case equals 4. If the Discrete Fourier Transform (DFT) 
of this signal were to be taken, then the implied periodicity of the signal is shown 
as in the top portion of the figure. Quite obviously, an adequate representation of 
this signal with sines and cosines will require substantial high frequency 
components. The bottom portion of the figure shows how the DCT operation 
overcomes this problem, by using reflective symmetry before being periodically 
repeated. In this manner, the sharp time domain discontinuities are eliminated, 
allowing the energy to be concentrated more towards the lower end of the 
frequency spectrum. This example also illustrates an interesting fact, that the 
DCT of the n-point signal may be calculated by performing a 2n-point DFT5. 

 
To further demonstrate the effective energy concentration property of the DCT 
operation, a series of figures are given showing a deletion of a number of DCT 
coefficients. Figure 7 shows an 8-bit monochrome image, where an 8x8 DCT 
operation has been performed on all the blocks of the image, all of the 
coefficients are retained, then an 8x8 IDCT is performed to reconstruct the image. 
Figure 8 is the same image with only the 10 DCT coefficients in the upper left-
hand corner retained. The remaining 54 higher frequency DCT coefficients have 
all been set to zero. When the IDCT operation is applied and the image 
reconstructed, it is shown that the image still retains a fairly high degree of 
quality compared to the original image that was reconstructed using all 64 DCT 
coefficients. Figure 9 eliminates another diagonal row of DCT coefficients  such 
that only 6 are kept and used in the IDCT operation. Again, some degradation is 
apparent, but overall the picture quality is still fair. Figure 10 continues by 
eliminating another row, resulting in only 3 coefficients saved. At this point, 
fairly significant blockiness is observed, especially around sharp edges within the 
image. Figure 11 illustrates the extreme case where only the DC coefficient 
(extreme upper left-hand corner) is kept. Although dramatic blockiness is 
apparent, the image is still surprisingly recognizable when it is realized that only 
1 out of the original 64 coefficients have been maintained. 

 
Figures 12-14 show the above process in a slightly different light. These three 
figures clearly show the amount of energy that is missing when the higher 
frequency coefficients are deleted. It is also apparent that this energy is 
concentrated in areas of the image that are associated with edges, or high spatial 
frequencies. Because of this, it is desired that the total number and the degree of 
DCT coefficient deletion be controlled on a macroblock basis. This control is 



accomplished with a process called quantization. 
 
 
 

DCT Coefficient Quantization 



As was shown previously in Figure 5, the lower frequency DCT coefficients 
toward the upper left-hand corner of the coefficient matrix correspond to 
smoother spatial contours, while the DC coefficient corresponds to a solid 
luminance or color value for the entire block. Also, the higher frequency DCT 
coefficients toward the lower right-hand corner of the coefficient matrix 
correspond to finer spatial patterns, or even noise within the image. Since it is 
well known that the HVS is less sensitive to errors in high frequency coefficients 
than it is for lower frequencies, it is desired that the higher frequencies be more 
coarsely quantized in their representation. 

 
The process of DCT coefficient quantization is described as follows. Each 12-bit 
coefficient is divided by a corresponding quantization matrix value that is 
supplied from an intra quantization matrix. The default matrix is given in Figure 
15, and if the encoder decides it is warranted, it may substitute a new quantization 
matrix at a picture level and download it to the decoder via the bitstream. Each 
value in this matrix is pre-scaled by multiplying by a single value, known as the 
quantizer scale code. This value may range in value from 1-112, and is modifiable 
on a macroblock basis, making it useful as a fine-tuning parameter for the bit-rate 
control, since it would not be economical to send an entirely new matrix on a 
macroblock basis. The goal of this operation is to force as many of the DCT 
coefficients to zero, or near zero, as possible within the boundaries of the 
prescribed bit-rate and video quality parameters. 

 
 
 

Run-Length Amplitude/Variable Length Coding 
 

An example of a typical quantized DCT coefficient matrix is given in Figure 16. 
As desired, most of the energy is concentrated within the lower frequency portion 
of the matrix, and most of the higher frequency coefficients have been quantized 
to zero. Considerable savings can be had by representing the fairly large number 
of zero coefficients in a more effective manner, and that is the purpose of run-
length amplitude coding of the quantized coefficients. But before that process is 
performed, more efficiency can be gained by reordering the DCT coefficients. 

 
Since most of the non-zero DCT coefficients will typically be concentrated in the 
upper left-hand corner of the matrix, it is apparent that a zigzag scanning pattern 
will tend to maximize the probability of achieving long runs of consecutive zero 
coefficients. This zigzag scanning pattern is shown in the upper portion of Figure 
17. Note for the sake of completeness that a second, alternate scanning pattern 
defined in MPEG-2 is shown in the lower portion of the figure. This scanning 
pattern may be chosen by the encoder on a frame basis, and has been shown to be 
effective on interlaced video images. This paper will concentrate only on usage of 
the standard zigzag pattern, however. 

 
Again, the block of quantized DCT coefficients as presented in Figure 16 is 
referenced. Scanning of the example coefficients in a zigzag pattern results in a 
sequence of numbers as follows: 8, 4, 4, 2, 2, 2, 1, 1, 1, 1, (12 zeroes), 1, (41 
zeroes). This sequence is then represented as a run-length (representing the 
number of consecutive zeroes) and an amplitude (coefficient value following a 
run of zeroes). These values are then looked up in a fixed table of variable length 
codes6, where the most probable occurrence is given a relatively short code, and 
the least probable occurrence is given a relatively long code. In this example, this 
becomes: 

 
 
 
 



Zero Run-Length Amplitude MPEG Code Value 

N/A 8 (DC Value) 110 1000 



 

0 4 0000 1100 

0 4 0000 1100 

0 2 0100 0 

0 2 0100 0 

0 2 0100 0 

0 1 110 

0 1 110 

0 1 110 

0 1 110 

12 1 0010 0010 0 

EOB EOB 10 

 
 

 

Note that the first run of 12 zeroes has been very efficiently represented with only 
9 bits, and the last run of 43 zeroes has been entirely eliminated, represented only 
with a 2-bit End Of Block (EOB) indicator. It can be seen from the table that the 
quantized DCT coefficients are now represented by a sequence of 61 binary bits. 
Considering that the original 8x8 block of 8-bit pixels required 512 bits for full 
representation, this is a compression of approximately 8.4:1 at this point. 

 
Certain coefficient values that are not particularly likely to occur are coded with 
escape sequences to prevent the code tables from becoming too long. As an 
example, consider what would happen if the last isolated coefficient value of 1 
was instead a value of 3. There is no code value for a run-length of 12 followed 
by an amplitude of 3, so it is instead coded with the escape sequence 0000 01, a 
6-bit representation of the run-length (12 = 001100), and finally a 12-bit 
representation of the amplitude (3 = 000000000011). All of the other values in the 
table remain the same as before. In this case, the total number of bits will grow to 
76, and the compression is lowered to approximately 6.7:1. 

 
 
 

Video Buffer and Rate Control 
 

Most of the applications that were mentioned in the introduction use a fixed bit-
rate for the transmission of the compressed information. For the case of HDTV 
broadcasts, this fixed rate will be 18 Mb/sec for the video signal. Unfortunately, 
the individual video images to be coded may contain drastically varying amounts 
of information, resulting in wildly varying coding efficiencies from picture to 
picture. This may also occur within a given picture, as portions of the picture may 
be very smooth, yet other areas may contain large amounts of high frequency 
information. Because of these variations, it is necessary to buffer the encoded 
bitstream before it is transmitted. Due to the fact that the buffer must necessarily 
by limited in size (physical limitations and delay constraints), a feedback system 
must be used as a rate control mechanism to prevent underflow or overflow 
within the buffer. The buffer and rate controller are necessary 



for intra frame only coding/decoding systems, but become even more important 
for non-intra coded systems as the coding efficiency changes relative to the type 
of frame coding utilized, and there can be drastic differences in the total number 
of bits that ultimately are used to represent the original I, P, and B frames. 

 
By looking at Figure 1, it can be seen that the only block available for the rate 
control mechanism to reasonably modify is the DCT coefficient quantizer. 
Because the quantizer matrix may be changed on a picture basis and the quantizer 
scale may be changed on a macroblock basis, these parameters are commonly 
used by encoder rate control algorithms to provide dynamic control over the 
relative buffer fullness. In this manner, a constant bit-rate may be provided by the 
output of the encoder buffer, yet underflow or overflow may be prevented without 
severe quality penalties such as the repeating or dropping of entire video frames. 
It should be noted that although rate control algorithms are necessary in fixed bit-
rate applications, neither the MPEG-1 nor the MPEG-2 standard define particular 
implementations. Since these algorithms have direct bearing on the ultimate video 
presentation quality, most of them are encoder vendor proprietary, and the subject 
of current research. A list of some of the more well-known general algorithms 
may be found in this reference3. 

 

 
Non-Intra Frame Coding Techniques 
 

The previously discussed intra frame coding techniques were limited to 
processing the video signal on a spatial basis, relative only to information within 
the current video frame. Considerably more compression efficiency can be 
obtained however, if the inherent temporal, or time-based redundancies, are 
exploited as well. Anyone who has ever taken a reel of the old-style super-8 
movie film and held it up to a light can certainly remember seeing that most 
consecutive frames within a sequence are very similar to the frames both before 
and after the frame of interest. Temporal processing to exploit this redundancy 
uses a technique known as block-based motion compensated prediction, using 
motion estimation. A block diagram of the basic encoder with extensions for non-
intra frame coding techniques is given in Figure 18. Of course, this encoder can 
also support intra frame coding as a subset. 

 
 
 
 
 
 
 

 
P Frames 
 

Starting with an intra, or I frame, the encoder can forward predict a future frame. 
This is commonly referred to as a P frame, and it may also be predicted from 
other P frames, although only in a forward time manner. As an example, consider 
a group of pictures that lasts for 6 frames. In this case, the frame ordering is given 
as I,P,P,P,P,P,I,P,P,P,P,… 

 
Each P frame in this sequence is predicted from the frame immediately preceding 
it, whether it is an I frame or a P frame. As a reminder, I frames are coded 
spatially with no reference to any other frame in the sequence. 



B Frames 
 

The encoder also has the option of using forward/backward interpolated 
prediction. These frames are commonly referred to as bi-directional interpolated 
prediction frames, or B frames for short. As an example of the usage of I, P, and 
B frames, consider a group of pictures that lasts for 6 frames, and is given as 
I,B,P,B,P,B,I,B,P,B,P,B,… As in the previous I & P only example, I frames are 
coded spatially only and the P frames are forward predicted based on previous I 
and P frames. The B frames however, are coded based on a forward prediction 
from a previous I or P frame, as well as a backward prediction from a succeeding 
I or P frame. As such, the example sequence is processed by the encoder such that 
the first B frame is predicted from the first I frame and first P frame, the second B 
frame is predicted from the second and third P frames, and the third B frame is 
predicted from the third P frame and the first I frame of the next group of 
pictures. From this example, it can be seen that backward prediction requires that 
the future frames that are to be used for backward prediction be encoded and 
transmitted first, out of order. This process is summarized in Figure 19. There is 
no defined limit to the number of consecutive B frames that may be used in a 
group of pictures, and of course the optimal number is application dependent. 
Most broadcast quality applications however, have tended to use 2 consecutive B 
frames (I,B,B,P,B,B,P,…) as the ideal trade-off between compression efficiency 
and video quality. 

 
The main advantage of the usage of B frames is coding efficiency. In most cases, 
B frames will result in less bits being coded overall. Quality can also be improved 
in the case of moving objects that reveal hidden areas within a video sequence. 
Backward prediction in this case allows the encoder to make more intelligent 
decisions on how to encode the video within these areas. Also, since B frames are 
not used to predict future frames, errors generated will not be propagated further 
within the sequence. 

 
One disadvantage is that the frame reconstruction memory buffers within the 
encoder and decoder must be doubled in size to accommodate the 2 anchor 
frames. This is almost never an issue for the relatively expensive encoder, and in 
these days of inexpensive DRAM it has become much less of an issue for the 
decoder as well. Another disadvantage is that there will necessarily be a delay 
throughout the system as the frames are delivered out of order as was shown in 
Figure 
19. Most one-way systems can tolerate these delays, as they are more 
objectionable in applications such as video conferencing systems. 

 
 
 
 
 
 

Motion Estimation 
 

The temporal prediction technique used in MPEG video is based on motion 
estimation. The basic premise of motion estimation is that in most cases, 
consecutive video frames will be similar except for changes induced by objects 
moving within the frames. In the trivial case of zero motion between frames (and 
no other differences caused by noise, etc.), it is easy for the encoder to efficiently 
predict the current frame as a duplicate of the prediction frame. When this is 
done, the only information necessary to transmit to the decoder becomes the 
syntactic overhead necessary to reconstruct the picture from the original reference 



frame. When there is motion in the images, the situation is not as simple. 
 
Figure 20 shows an example of a frame with 2 stick figures and a tree. The 
second half of this figure is an example of a possible next frame, where panning 
has resulted in the tree moving 



down and to the right, and the figures have moved farther to the right because of 
their own movement outside of the panning. The problem for motion estimation 
to solve is how to adequately represent the changes, or differences, between these 
two video frames. 

 
The way that motion estimation goes about solving this problem is that a 
comprehensive 2- dimensional spatial search is performed for each luminance 
macroblock. Motion estimation is not applied directly to chrominance in MPEG 
video, as it is assumed that the color motion can be adequately represented with 
the same motion information as the luminance. It should be noted at this point 
that MPEG does not define how this search should be performed. This is a detail 
that the system designer can choose to implement in one of many possible ways. 
This is similar to the bit-rate control algorithms discussed previously, in the 
respect that complexity vs. quality issues need to be addressed relative to the 
individual application. It is well known that a full, exhaustive search over a wide 
2-dimensional area yields the best matching results in most cases, but this 
performance comes at an extreme computational cost to the encoder. As motion 
estimation usually is the most computationally expensive portion of the video 
encoder, some lower cost encoders might choose to limit the pixel search range, 
or use other techniques such as telescopic searches, usually at some cost to the 
video quality. 

 
Figure 21 shows an example of a particular macroblock from Frame 2 of Figure 
20, relative to various macroblocks of Frame 1. As can be seen, the top frame has 
a bad match with the macroblock to be coded. The middle frame has a fair match, 
as there is some commonality between the 2 macroblocks. The bottom frame has 
the best match, with only a slight error between the 2 macroblocks. Because a 
relatively good match has been found, the encoder assigns motion vectors to the 
macroblock, which indicate how far horizontally and vertically the macroblock 
must be moved so that a match is made. As such, each forward and backward 
predicted macroblock may contain 2 motion vectors, so true bidirectionally 
predicted macroblocks will utilize 4 motion vectors. 

 
Figure 22 shows how a potential predicted Frame 2 can be generated from Frame 
1 by using motion estimation. In this figure, the predicted frame is subtracted 
from the desired frame, leaving a (hopefully) less complicated residual error 
frame that can then be encoded much more efficiently than before motion 
estimation. It can be seen that the more accurate the motion is estimated and 
matched, the more likely it will be that the residual error will approach zero, and 
the coding efficiency will be highest. Further coding efficiency is accomplished 
by taking advantage of the fact that motion vectors tend to be highly correlated 
between macroblocks. Because of this, the horizontal component is compared to 
the previously valid horizontal motion vector and only the difference is coded. 
This same difference is calculated for the vertical component before coding. 
These difference codes are then described with a variable length code for 
maximum compression efficiency. 

 
Of course not every macroblock search will result in an acceptable match. If the 
encoder decides that no acceptable match exists (again, the "acceptable" criterion 
is not MPEG defined, and is up to the system designer) then it has the option of 
coding that particular macroblock as an intra macroblock, even though it may be 
in a P or B frame. In this manner, high quality video is maintained at a slight cost 
to coding efficiency. 

 
 
 

Coding of Residual Errors 
 



After a predicted frame is subtracted from its reference and the residual error 
frame is generated, this information is spatially coded as in I frames, by coding 
8x8 blocks with the DCT, DCT coefficient quantization, run-length/amplitude 
coding, and bitstream buffering with rate control feedback. This process is 
basically the same with some minor differences, the main ones being in 



the DCT coefficient quantization. The default quantization matrix for non-intra 
frames is a flat matrix with a constant value of 16 for each of the 64 locations. 
This is very different from that of the default intra quantization matrix (Figure 15) 
which is tailored for more quantization in direct proportion to higher spatial 
frequency content. As in the intra case, the encoder may choose to override this 
default, and utilize another matrix of choice during the encoding process, and 
download it via the encoded bitstream to the decoder on a picture basis. Also, the 
non-intra quantization step function contains a dead-zone around zero that is not 
present in the intra version. This helps eliminate any lone DCT coefficient 
quantization values that might reduce the run-length amplitude efficiency. 
Finally, the motion vectors for the residual block information are calculated as 
differential values and are coded with a variable length code according to their 
statistical likelihood of occurrence. 

 
 
 

Intra Frame Decoding 
 

To decode a bitstream generated from the encoder of Figure 1, it is necessary to 
reverse the order of the encoder processing. In this manner, an I frame decoder 
consists of an input bitstream buffer, a Variable Length Decoder (VLD), an 
inverse quantizer, an Inverse Discrete Cosine Transform (IDCT), and an output 
interface to the required environment (computer hard drive, video frame buffer, 
etc.). This decoder is shown in Figure 23. 

 
The input bitstream buffer consists of memory that operates in the inverse fashion 
of the buffer in the encoder. For fixed bit-rate applications, the constant rate 
bitstream is buffered in the memory and read out at a variable rate depending on 
the coding efficiency of the macroblocks and frames to be decoded. 

 
The VLD is probably the most computationally expensive portion of the decoder 
because it must operate on a bit-wise basis (VLD decoders need to look at every 
bit, because the boundaries between variable length codes are random and non-
aligned) with table look-ups performed at speeds up to the input bit-rate. This is 
generally the only function in the receiver that is more complex to implement 
than its corresponding function within the encoder, because of the extensive high-
speed bit-wise processing necessary. 

 
The inverse quantizer block multiplies the decoded coefficients by the 
corresponding values of the quantization matrix and the quantization scale factor. 
Clipping of the resulting coefficients is performed to the region –2048 to +2047, 
then an IDCT mismatch control is applied to prevent long term error propagation 
within the sequence. 

 
The IDCT operation is given in Equation 2, and is seen to be similar to the DCT 
operation of Equation 1. As such, these two operations are very similar in 
implementation between encoder and decoder. 

 

Non-Intra Decoding 
 

It was shown previously that the non-intra frame encoder built upon the basic 
building blocks of the intra frame encoder, with the addition of motion estimation 
and its associated support structures. This is also true of the non-intra frame 
decoder, as it contains the same core structure as the intra frame decoder with the 
addition of motion compensation support. Again, support for intra frame decoding 
is inherent in the structure, so I, P, and B frame decoding is possible. The decoder 
is shown in. 



 

Implementation Issues 



It is all very fine to have standards that define video compression techniques, but 
general acceptance will never come if those standards cannot be reasonably 
implemented. Of course the expression "reasonably implemented" will be highly 
application dependent. Take for example the case of a typical digital television 
set-top box. These devices are extremely cost sensitive, with target prices of 
approximately 200-300 dollars for a self-contained unit including chassis and 
power supply. As such, the typical design consists of a custom VLSI chip 
dedicated to video compression, and supported by external DRAM and a very low 
price microprocessor. Cost is further reduced in systems such as these by 
incorporating the audio decoder and possibly the transport demultiplexer into the 
same VLSI device as the video decoder. Devices are available now that perform 
these functions while interfacing with 2MB of standard DRAM via a 64 bit data 
bus (CCIR-601 resolution video decoding). Several manufacturers have plans to 
further reduce cost by lowering the data bus interface to 32 bits by using faster 
SDRAM chips for external storage. Also, it was pointed out previously that the 
basic techniques used in MPEG video are similar to those used in the JPEG still 
image compression standard. Because of this, it is fairly easy to design a multi-
purpose decoder device to incorporate extra functionality such as JPEG, or even 
H.261 video conferencing support if the end application warrants the inclusions. 
High-end applications such as HDTV decoding chipsets (another cost sensitive 
consumer area) should also be supported by several manufacturers by the end of 
1998. An interesting summary of typical hardware requirements is given in the 
following table, taken from the MPEG FAQ (located at http://www.crs4.it/); 

 
 
 
 

video profile 
typical decoder 
transistor count 

total dram 
DRam bus width, 
speed 

MPEG-1 CPB 0.4-0.75 million 4Mb 16 bits, 80 ns 

MPEG-1 601 0.8-1.1 million 16Mb 64 bits, 80 ns 

MPEG-2 MP@ML 0.9-1.5 million 16 Mb 64 bits, 80 ns 

MPEG-2 MP@HL 2.0-3.0 million 64 Mb N/A 

 
 

 

Another possible need for MPEG video decoding, but somewhat orthogonal to 
the above, is with web browsing in the PC environment. In this application, the 
user may desire to decode the video bitstream without having to purchase a 
separate card containing extra hardware. Here it makes sense to utilize a software 
decoder running entirely on the host CPU. There are presently many suppliers of 
PC software to decode and display MPEG video, and their performance is 
dependent on the source bitstream, video resolution, and CPU speed. 

 
New PC and workstation applications are emerging that severely tax the CPU, 
and that cannot be successfully implemented by merely using higher clock speed 
CPU chips. In these cases, CPU designers have taken a careful look at what 
"multimedia" applications such as MPEG video require, and have started to 
include instructions and architectural features within the CPU to facilitate these 
demanding requirements. An in-depth overview of video compression’s influence 
on CPU design is available in this reference7, and it includes details of Intel’s 
MMX, Sun’s Visual Instruction Set, and Hewlett-Packard’s MAX-2 subword 
parallelism architectures, and how they can be used to improve the performance 
of applications such as MPEG video. 



Summary 
 

This tutorial paper is just an introduction to some of the various components of 
MPEG video compression. Textbooks have been written about individual 
techniques such as the discrete cosine transform, and this and other components 
are the subjects of current academic and industry research. The reader is 
encouraged to search out more in-depth information on these topics, MPEG 
syntax, applications, etc., which can be found in the references listed below. 



 



 



 
 

Note: It is hard to see in these scanned images, but the "Select 
Coefficients" box (the 8x8 grid under each image) contains gray boxes 
(coefficient on) and black boxes (coefficient off). 



 
 

Note: It is hard to see in these scanned images, but the "Select 
Coefficients" box (the 8x8 grid under each image) contains gray boxes 
(coefficient on) and black boxes (coefficient off). 



 



 



 



 



 

 
 

 



 
 
 
 

 

 
 

 



 


